Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 4

Answer

\begin{aligned} \int \sin ^{4} 2 x \cos 2 x d x =\frac{1}{10} \sin ^{5} 2 x+C \end{aligned}

Work Step by Step

Given $$\begin{equation} \int \sin ^{4} 2 x \cos 2 x d x \end{equation}$$ So, we have \begin{aligned} I&=\int \sin ^{4} 2 x \cos 2 x d x\\ &=\frac{1}{2} \int \sin ^{4} 2 x \cos 2 x \cdot 2 d x\\ &=\frac{1}{10} \sin ^{5} 2 x+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.