Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 17

Answer

\begin{aligned} \int_{0}^{\pi} 8 \sin ^{4} x d x =3 \pi \end{aligned}

Work Step by Step

Given $$ \int_{0}^{\pi} 8 \sin ^{4} x d x $$ So, we have \begin{aligned} I&= \int_{0}^{\pi} 8 \sin ^{4} x d x\\ &= \int_{0}^{\pi} 8 (\sin ^{2} x)^2 d x, \\ &\text{since} \ \ \sin ^{2} x=\frac{1-\cos 2 x}{2} ,\text{ we get}\\ I&=8 \int_{0}^{\pi}\left(\frac{1-\cos 2 x}{2}\right)^{2} d x\\ &=2 \int_{0}^{\pi}\left(1-2 \cos 2 x+\cos ^{2} 2 x\right) d x\\ &\text{since} \ \ \cos ^{2} 2x=\frac{1+\cos 4 x}{2} ,\text{ we get}\\ I&=2 \int_{0}^{\pi} d x-2 \int_{0}^{\pi} \cos 2 x \cdot 2 d x+2 \int_{0}^{\pi} \frac{1+\cos 4 x}{2} d x\\ &=[2 x-2 \sin 2 x]_{0}^{\pi}+\int_{0}^{\pi} d x+\int_{0}^{\pi} \cos 4 x d x\\ &=2 \pi-2\sin 2\pi-0+2\sin0+\left[x+\frac{1}{2} \sin 4 x\right]_{0}^{\pi}\\ &=2 \pi+\left[\pi+\frac{1}{2} \sin 4 \pi\right]-\left[0+\frac{1}{2} \sin 0\right]\\ &=2 \pi+\pi\\ &=3 \pi \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.