Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 48

Answer

$$-\frac{1}{10} \cot ^{5} 2 x+\frac{1}{6}\cot^3{2x}-\frac{1}{2} \cot 2 x-x+C$$

Work Step by Step

We integrate as follows: \begin{align*} \int \cot ^{6} 2 x d x&=\int \cot ^{4} 2 x \cot ^{2} 2 x d x\\ &=\int \cot ^{4} 2 x\left(\csc ^{2} 2 x-1\right) d x\\ &=\int \cot ^{4} 2 x \csc ^{2} 2 x d x-\int \cot ^{4} 2 x d x\\ &=\int \cot ^{4} 2 x \csc ^{2} 2 x d x-\int \cot ^{2} 2 x \cot ^{2} 2 x d x\\ &=\int \cot ^{4} 2 x \csc ^{2} 2 x d x-\int \cot ^{2} 2 x\left(\csc ^{2} 2 x-1\right) d x\\ &=\int \cot ^{4} 2 x \csc ^{2} 2 x d x-\int \cot ^{2} 2 x \csc ^{2} 2 x d x+\int \cot ^{2} 2 x d x\\ &=\int \cot ^{4} 2 x \csc ^{2} 2 x d x-\int \cot ^{2} 2 x \csc ^{2} 2 x d x+\int\left(\cot ^{2} 2 x-1\right) d x\\ &=\int \cot ^{4} 2 x \csc ^{2} 2 x d x-\int \cot ^{2} 2 x \csc ^{2} 2 x d x+\int \csc ^{2} 2 x d x-\int d x\\ &=-\frac{1}{10} \cot ^{5} 2 x+\frac{1}{6}\cot^3{2x}-\frac{1}{2} \cot 2 x-x+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.