Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 44

Answer

$$\frac{1}{5}{\left( {\tan x} \right)^5} + \frac{2}{3}{\left( {\tan x} \right)^3} + \tan x + C $$

Work Step by Step

$$\eqalign{ & \int {{{\sec }^6}x} dx \cr & {\text{We write }}{\sec ^6}x{\text{ as }}{\sec ^4}x{\sec ^2}x{\text{ }} \cr & = \int {{{\sec }^4}x{{\sec }^2}x} dx \cr & = \int {{{\left( {{{\sec }^2}x} \right)}^2}{{\sec }^2}x} dx \cr & \cr & {\text{Use the fundamental identiy }}{\sec ^2}\theta = {\tan ^2}\theta + 1 \cr & = \int {{{\left( {{{\tan }^2}x + 1} \right)}^2}{{\sec }^2}x} dx \cr & {\text{Integrate by substitution method}} \cr & {\text{Let }}u = \tan x,\,\,\,\,du = {\sec ^2}xdx,\,\,\,\,dx = \frac{{du}}{{{{\sec }^2}x}} \cr & {\text{Then}}{\text{,}} \cr & = \int {{{\left( {{u^2} + 1} \right)}^2}} {\sec ^2}x\left( {\frac{{du}}{{{{\sec }^2}x}}} \right) \cr & {\text{Cancel common factor }}{\sec ^2}x \cr & = \int {{{\left( {{u^2} + 1} \right)}^2}} du \cr & {\text{expanding}} \cr & = \int {\left( {{u^4} + 2{u^2} + 1} \right)} du \cr & {\text{integrating}} \cr & = \frac{1}{5}{u^5} + \frac{2}{3}{u^3} + u + C \cr & {\text{write in terms of }}x,\,\,\,u = \tan x \cr & = \frac{1}{5}{\left( {\tan x} \right)^5} + \frac{2}{3}{\left( {\tan x} \right)^3} + \tan x + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.