Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 18

Answer

\begin{aligned} \int 8 \cos ^{4} 2 \pi x d x =3 x+\frac{1}{\pi} \sin 4 \pi x+\frac{1}{8 \pi} \sin 8 \pi x+C\\ \end{aligned}

Work Step by Step

Given $$ \int 8 \cos ^{4} 2 \pi x \ \ d x $$ So, we have \begin{aligned} I&= \int 8 \cos ^{4} 2 \pi x d x\\ &= \int 8 (\cos ^{2} 2 \pi x)^2 d x\\ &\text{since} \ \ \cos ^{2} 2 \pi x=\frac{1+\cos 4 \pi x}{2} ,\text{ we get}\\ I&=8 \int\left(\frac{1+\cos 4 \pi x}{2}\right)^{2} d x\\ &=2 \int\left(1+2 \cos 4 \pi x+\cos ^{2} 4 \pi x\right) d x\\ &\text{since} \ \ \cos ^{2} 4 \pi x=\frac{1+\cos 8 \pi x}{2} ,\text{ we get}\\ I&=2 \int d x+4 \int \cos 4 \pi x d x+2 \int \frac{1+\cos 8 \pi x}{2} d x\\ &=3 \int d x+4 \int \cos 4 \pi x d x+\int \cos 8 \pi x d x\\ &=3 x+\frac{1}{\pi} \sin 4 \pi x+\frac{1}{8 \pi} \sin 8 \pi x+C\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.