Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 40

Answer

$$\frac{1}{2}\sec {e^x}\tan {e^x} + \frac{1}{2}\ln \left| {\sec {e^x} + \tan {e^x}} \right| + C $$

Work Step by Step

$$\eqalign{ & \int {{e^x}{{\sec }^3}{e^x}} dx \cr & {\text{Let }}u = {e^x},\,\,\,\,du = {e^x}dx,\,\,\,\,dx = \frac{{du}}{{{e^x}}} \cr & {\text{Then}}{\text{,}} \cr & \int {{e^x}{{\sec }^3}{e^x}} dx = \int {{e^x}{{\sec }^3}u} \left( {\frac{{du}}{{{e^x}}}} \right) \cr & {\text{Cancel common factor }}{e^x} \cr & = \int {{{\sec }^3}u} du \cr & \cr & {\text{From example 6, we obtain }} \cr & \int {{{\sec }^3}xdx} = \frac{1}{2}\sec x\tan x + \frac{1}{2}\ln \left| {\sec x + \tan x} \right| + C \cr & {\text{Then}}{\text{,}} \cr & \cr & = \frac{1}{2}\sec u\tan u + \frac{1}{2}\ln \left| {\sec u + \tan u} \right| + C \cr & {\text{write in terms of }}x,{\text{ use }}u = {e^x} \cr & = \frac{1}{2}\sec {e^x}\tan {e^x} + \frac{1}{2}\ln \left| {\sec {e^x} + \tan {e^x}} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.