Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 12

Answer

\begin{aligned} \int \cos ^{3} 2 x \sin ^{5} 2 x d x =\frac{1}{12} \sin ^{6} 2 x-\frac{1}{16} \sin ^{8} 2 x+C \end{aligned}

Work Step by Step

Given $$ \int \cos ^{3} 2 x \sin ^{5} 2 x d x $$ So, we have \begin{aligned} I&= \int \cos ^{3} 2 x \sin ^{5} 2 x d x\\ &=\frac{1}{2} \int \cos ^{3} 2 x \sin ^{5} 2 x \cdot 2 d x\\ &=\frac{1}{2} \int \cos 2 x \cos ^{2} 2 x \sin ^{5} 2 x \cdot 2 d x\\ &=\frac{1}{2} \int\left(1-\sin ^{2} 2 x\right) \sin ^{5} 2 x \cos 2 x \cdot 2 d x\\ &=\frac{1}{2} \int \sin ^{5} 2 x \cos 2 x \cdot 2 d x-\frac{1}{2} \int \sin ^{7} 2 x \cos 2 x \cdot 2 d x\\ &=\frac{1}{12} \sin ^{6} 2 x-\frac{1}{16} \sin ^{8} 2 x+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.