Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 16

Answer

\begin{aligned} \int 7 \cos ^{7} t \ dt =7 \sin t-7 \sin ^{3} t+\frac{21}{5} \sin ^{5} t-\sin ^{7} t+C \end{aligned}

Work Step by Step

Given $$ \int 7 \cos ^{7}t\ dt $$ So, we have \begin{aligned} I&= \int 7 \cos ^{7} t dt \\ &= \int 7 \cos t\ (\cos ^{2} t)^3 dt \\ &= \int 7 \cos t\ (1-\sin ^{2} t)^3 dt \\ &= \int 7 \cos t\ (1-3\sin^2t+3\sin^4t-\sin ^{6} t) dt \\ &=7\left[\int \cos t\ d t-3 \int \sin ^{2} t \cos t\ d t\\ +3 \int \sin ^{4} t \cos t\ d t-\int \sin ^{6} t \cos t \ d t\right]\\ &=7\left(\sin t-3 \frac{\sin ^{3} t}{3}+3 \frac{\sin ^{5} t}{5}-\frac{\sin ^{7} t}{7}\right)+C\\ &=7 \sin t-7 \sin ^{3} t+\frac{21}{5} \sin ^{5} t-\sin ^{7} t+C \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.