Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 24

Answer

\begin{aligned} \int_{0}^{\pi} \sqrt{1-\cos 2 x} d x =2 \sqrt{2} \end{aligned}

Work Step by Step

Given $$\int_{0}^{\pi} \sqrt{1-\cos 2 x} d x $$ So, we have \begin{aligned} I&=\int_{0}^{\pi} \sqrt{1-\cos 2 x} d x\\ &\text{since} \ \ \cos2 x= 1-2\sin^2x \Rightarrow2 \sin ^{2} x=1-\cos x,\text{ we get}\\ I&=\int_{0}^{\pi} \sqrt{2}|\sin x| d x\\ &=\int_{0}^{\pi} \sqrt{2} \sin x d x\\ &=[-\sqrt{2} \cos x]_{0}^{\pi}\\ &=[-\sqrt{2} \cos \pi]-[-\sqrt{2} \cos 0]\\ &=\sqrt{2}+\sqrt{2}\\ &=2 \sqrt{2} \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.