Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 9

Answer

$$\frac{{dy}}{{dx}} = x{e^x}$$

Work Step by Step

$$\eqalign{ & y = x{e^x} - {e^x} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {x{e^x} - {e^x}} \right] \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {x{e^x}} \right] - \frac{d}{{dx}}\left[ {{e^x}} \right] \cr & {\text{use the product rule for }}\frac{d}{{dx}}\left[ {x{e^x}} \right] \cr & \frac{{dy}}{{dx}} = x\frac{d}{{dx}}\left[ {{e^x}} \right] + {e^x}\frac{d}{{dx}}\left[ x \right] - \frac{d}{{dx}}\left[ {{e^x}} \right] \cr & {\text{solve the derivatives and simplify}} \cr & \frac{{dy}}{{dx}} = x\left( {{e^x}} \right) + {e^x}\left( 1 \right) - {e^x} \cr & \frac{{dy}}{{dx}} = x{e^x} + {e^x} - {e^x} \cr & \frac{{dy}}{{dx}} = x{e^x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.