Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 40

Answer

$$\frac{1}{4}{e^{{t^4}}} + C $$

Work Step by Step

$$\eqalign{ & \int {{t^3}{e^{\left( {{t^4}} \right)}}} dt \cr & {\text{set }}u = {t^4}{\text{ then }}\frac{{du}}{{dt}} = 4{t^3} \to \frac{{du}}{{4{t^3}}} = dt \cr & {\text{write the integrand in terms of }}u \cr & \int {{t^3}{e^{\left( {{t^4}} \right)}}} dt = \int {{t^3}{e^u}} \left( {\frac{{du}}{{4{t^3}}}} \right) \cr & {\text{cancel common terms}} \cr & = \int {{e^u}} \left( {\frac{{du}}{4}} \right) = \frac{1}{4}\int {{e^u}} du \cr & {\text{integrating}} \cr & = \frac{1}{4}{e^u} + C \cr & {\text{replace }} - {t^2}{\text{ for }}u \cr & = \frac{1}{4}{e^{{t^4}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.