Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 17

Answer

$$\frac{{dy}}{{dt}} = \frac{{1 - t}}{t}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {3t{e^{ - t}}} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {\ln \left( {3t{e^{ - t}}} \right)} \right] \cr & {\text{use the rule }}\frac{d}{{dt}}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{dt}};{\text{ for this exercise consider }}u = 3t{e^{ - t}}.{\text{ then}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{3t{e^{ - t}}}}\frac{d}{{dt}}\left[ {3t{e^{ - t}}} \right] \cr & {\text{use the product rule }} \cr & \frac{{dy}}{{dt}} = \frac{1}{{3t{e^{ - t}}}}\left( {3t\frac{d}{{dt}}\left[ {{e^{ - t}}} \right] + {e^{ - t}}\frac{d}{{dt}}\left[ {3t} \right]} \right) \cr & {\text{solving derivatives }} \cr & \frac{{dy}}{{dt}} = \frac{1}{{3t{e^{ - t}}}}\left( {3t\left( { - {e^{ - t}}} \right) + {e^{ - t}}\left( 3 \right)} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{dt}} = \frac{1}{{3t{e^{ - t}}}}\left( {3{e^{ - t}} - 3t{e^{ - t}}} \right) \cr & \frac{{dy}}{{dt}} = \frac{{3{e^{ - t}}\left( {1 - t} \right)}}{{3t{e^{ - t}}}} \cr & \frac{{dy}}{{dt}} = \frac{{1 - t}}{t} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.