Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 28

Answer

$$\frac{{dy}}{{dx}} = \frac{{{{\cos }^2}y\left( {x{e^x} + 1} \right)}}{x}$$

Work Step by Step

$$\eqalign{ & \tan y = {e^x} + \ln x \cr & {\text{find the derivative using implicit differentiation; }} \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\tan y} \right] = \frac{d}{{dx}}\left[ {{e^x} + \ln x} \right] \cr & {\text{solving the derivatives}}{\text{, use }}\frac{d}{{dx}}\left[ {\tan u} \right] = {\sec ^2}u\frac{{du}}{{dx}}{\text{ and }}\frac{d}{{dx}}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{dx}} \cr & {\sec ^2}y\frac{d}{{dx}}\left[ y \right] = {e^x} + \frac{1}{x} \cr & {\sec ^2}y\frac{{dy}}{{dx}} = \frac{{x{e^x} + 1}}{x} \cr & {\text{solving for }}\frac{{dy}}{{dx}} \cr & \frac{{dy}}{{dx}} = \frac{{x{e^x} + 1}}{{x{{\sec }^2}y}} \cr & or \cr & \frac{{dy}}{{dx}} = \frac{{{{\cos }^2}y\left( {x{e^x} + 1} \right)}}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.