Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 14

Answer

$$\frac{{dy}}{{d\theta }} = \frac{{1 - \theta }}{\theta }$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {3\theta {e^{ - \theta }}} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {\ln \left( {3\theta {e^{ - \theta }}} \right)} \right] \cr & {\text{use the rule }}\frac{d}{{d\theta }}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{d\theta }};{\text{ for this exercise consider }}u = 3\theta {e^{ - \theta }}.{\text{ then}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{3\theta {e^{ - \theta }}}}\frac{d}{{d\theta }}\left[ {3\theta {e^{ - \theta }}} \right] \cr & {\text{use the product rule }} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{3\theta {e^{ - \theta }}}}\left( {3\theta \frac{d}{{d\theta }}\left[ {{e^{ - \theta }}} \right] + {e^{ - \theta }}\frac{d}{{d\theta }}\left[ {3\theta } \right]} \right) \cr & {\text{solving derivatives, we get: }} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{3\theta {e^{ - \theta }}}}\left( {3\theta \left( { - {e^{ - \theta }}} \right) + {e^{ - \theta }}\left( 3 \right)} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{3\theta {e^{ - \theta }}}}\left( {3{e^{ - \theta }} - 3\theta {e^{ - \theta }}} \right) \cr & \frac{{dy}}{{d\theta }} = \frac{{3{e^{ - \theta }}\left( {1 - \theta } \right)}}{{3\theta {e^{ - \theta }}}} \cr & \frac{{dy}}{{d\theta }} = \frac{{1 - \theta }}{\theta } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.