Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 37

Answer

$$2{e^{\sqrt r }} + C $$

Work Step by Step

$$\eqalign{ & \int {\frac{{{e^{\sqrt r }}}}{{\sqrt r }}} dr \cr & {\text{set }}u = \sqrt r {\text{ then }}\frac{{du}}{{dr}} = \frac{1}{{2\sqrt r }} \to dr = 2\sqrt r du \cr & {\text{write the integrand in terms of }}u \cr & \int {\frac{{{e^{\sqrt r }}}}{{\sqrt r }}} dr = \int {\frac{{{e^u}}}{{\sqrt r }}} \left( {2\sqrt r du} \right) \cr & = 2\int {{e^u}} du \cr & {\text{integrating}} \cr & = 2{e^u} + C \cr & {\text{replace }}\sqrt r {\text{ for }}u \cr & = 2{e^{\sqrt r }} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.