Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 39

Answer

$$ - {e^{ - {t^2}}} + C $$

Work Step by Step

$$\eqalign{ & \int {2t{e^{ - {t^2}}}} dt \cr & {\text{set }}u = - {t^2}{\text{ then }}\frac{{du}}{{dt}} = - 2t \to \frac{{du}}{{ - 2t}} = dt \cr & {\text{write the integrand in terms of }}u \cr & \int {2t{e^{ - {t^2}}}} dt = \int {2t{e^u}} \left( {\frac{{du}}{{ - 2t}}} \right) \cr & {\text{cancel common terms}} \cr & = - \int {{e^u}} du \cr & {\text{integrating}} \cr & = - {e^u} + C \cr & {\text{replace }} - {t^2}{\text{ for }}u \cr & = - {e^{ - {t^2}}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.