Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 25

Answer

$$\frac{{dy}}{{dx}} = \frac{{y{e^y}\cos x}}{{1 - y{e^y}\sin x}}$$

Work Step by Step

$$\eqalign{ & \ln y = {e^y}\sin x \cr & {\text{find the derivative using the implicit differentiation;}} \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = \frac{d}{{dx}}\left[ {{e^y}\sin x} \right] \cr & {\text{use product rule}} \cr & \frac{d}{{dx}}\left[ {\ln y} \right] = {e^y}\frac{d}{{dx}}\left[ {\sin x} \right] + \sin x\frac{d}{{dx}}\left[ {{e^y}} \right] \cr & {\text{solving the derivatives}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = {e^y}\left( {\cos x} \right) + \sin x\left( {{e^y}} \right)\frac{{dy}}{{dx}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} = {e^y}\cos x + {e^y}\sin x\frac{{dy}}{{dx}} \cr & {\text{solving for }}\frac{{dy}}{{dx}} \cr & \frac{1}{y}\frac{{dy}}{{dx}} - {e^y}\sin x\frac{{dy}}{{dx}} = {e^y}\cos x \cr & \frac{{dy}}{{dx}} - y{e^y}\sin x\frac{{dy}}{{dx}} = y{e^y}\cos x \cr & \left( {1 - y{e^y}\sin x} \right)\frac{{dy}}{{dx}} = y{e^y}\cos x \cr & \frac{{dy}}{{dx}} = \frac{{y{e^y}\cos x}}{{1 - y{e^y}\sin x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.