Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 5

Answer

$$\frac{{dy}}{{dx}} = - 5{e^{ - 5x}}$$

Work Step by Step

$$\eqalign{ & y = {e^{ - 5x}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{e^{ - 5x}}} \right] \cr & {\text{we can use the formula }}\frac{d}{{dx}}{e^u} = {e^u}\frac{{du}}{{dx}}{\text{ where }}u{\text{ is any differentiable function of }}x. \cr & {\text{For this exercise you can note that }}u = - 5x,{\text{ then}} \cr & \frac{{dy}}{{dx}} = {e^{ - 5x}}\frac{d}{{dx}}\left[ { - 5x} \right] \cr & {\text{solve the derivative and simplify}} \cr & \frac{{dy}}{{dx}} = {e^{ - 5x}}\left( { - 5} \right) \cr & \frac{{dy}}{{dx}} = - 5{e^{ - 5x}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.