Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 13

Answer

$$\frac{{dy}}{{d\theta }} = 2{e^\theta }\cos \theta $$

Work Step by Step

$$\eqalign{ & y = {e^\theta }\left( {\sin \theta + \cos \theta } \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {{e^\theta }\left( {\sin \theta + \cos \theta } \right)} \right] \cr & {\text{use the product rule }} \cr & \frac{{dy}}{{d\theta }} = {e^\theta }\frac{d}{{d\theta }}\left[ {\sin \theta + \cos \theta } \right] + \left( {\sin \theta + \cos \theta } \right)\frac{d}{{d\theta }}\left[ {{e^\theta }} \right] \cr & {\text{solve the derivatives using }}\frac{d}{{d\theta }}\left[ {\sin \theta } \right] = \cos \theta,{\text{ }}\frac{d}{{d\theta }}\left[ {\cos \theta } \right] = - \sin \theta {\text{ and }}\frac{d}{{d\theta }}\left[ {{e^\theta }} \right] = {e^\theta } \cr & \frac{{dy}}{{d\theta }} = {e^\theta }\left( {\cos \theta - \sin \theta } \right) + \left( {\sin \theta + \cos \theta } \right)\left( {{e^\theta }} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{d\theta }} = {e^\theta }\cos \theta - {e^\theta }\sin \theta + {e^\theta }\sin \theta + {e^\theta }\cos \theta \cr & \frac{{dy}}{{d\theta }} = 2{e^\theta }\cos \theta \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.