Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 21

Answer

$$\frac{{dy}}{{dt}} = \left( {\frac{1}{t} - \sin t} \right){e^{\cos t + \ln t}}$$

Work Step by Step

$$\eqalign{ & y = {e^{\left( {\cos t + \ln t} \right)}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{e^{\left( {\cos t + \ln t} \right)}}} \right] \cr & {\text{We can use the formula }}\cr &\frac{d}{{dt}}{e^u} = {e^u}\frac{{du}}{{dt}}\cr &{\text{ where }}u{\text{ is any differentiable function of }}t \cr & {\text{For this exercise, you can note that }}\cr &u = 5\cos t + \ln t,{\text{ then}} \cr & \frac{{dy}}{{dt}} = {e^{\cos t + \ln t}}\frac{d}{{dt}}\left[ {\cos t + \ln t} \right] \cr & {\text{Solve the derivative and simplify}} \cr & \frac{{dy}}{{dt}} = {e^{\cos t + \ln t}}\left( { - \sin t + \frac{1}{t}} \right) \cr & \frac{{dy}}{{dt}} = \left( {\frac{1}{t} - \sin t} \right){e^{\cos t + \ln t}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.