Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 8

Answer

$$\frac{{dy}}{{dx}} = {e^{\left( {4\sqrt x + {x^2}} \right)}}\left( {\frac{2}{{\sqrt x }} + 2x} \right)$$

Work Step by Step

$$\eqalign{ & y = {e^{\left( {4\sqrt x + {x^2}} \right)}} \cr & {\text{Find the derivative of }}y{\text{ with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {{e^{\left( {4\sqrt x + {x^2}} \right)}}} \right] \cr & {\text{we can use the formula }}\frac{d}{{dx}}{e^u} = {e^u}\frac{{du}}{{dx}};{\text{ where }}u{\text{ is any differentiable function of }}x. \cr & {\text{For this exercise you can note that }}u = 4\sqrt x + {x^2},{\text{ then}} \cr & \frac{{dy}}{{dx}} = {e^{\left( {4\sqrt x + {x^2}} \right)}}\frac{d}{{dx}}\left[ {4\sqrt x + {x^2}} \right] \cr & \cr & {\text{Solving }}\frac{d}{{dx}}\left[ {4\sqrt x + {x^2}} \right] \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 4\left( {\frac{1}{{2\sqrt x }}} \right) + 2x \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{2}{{\sqrt x }} + 2x \cr & \cr & {\text{then}} \cr & \frac{{dy}}{{dx}} = {e^{\left( {4\sqrt x + {x^2}} \right)}}\frac{d}{{dx}}\left[ {4\sqrt x + {x^2}} \right] = {e^{\left( {4\sqrt x + {x^2}} \right)}}\left( {\frac{2}{{\sqrt x }} + 2x} \right) \cr & \frac{{dy}}{{dx}} = {e^{\left( {4\sqrt x + {x^2}} \right)}}\left( {\frac{2}{{\sqrt x }} + 2x} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.