Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 24

Answer

$4x(e^{2x})$ - $8({e^{4\sqrt x}})$

Work Step by Step

$\frac{dy}{dx}$ = $\ln{e^{2x}}\frac{d}{dx}(e^{2x})$ - $\ln{e^{4\sqrt x}}\frac{d}{dx}({e^{4\sqrt x}})$ $\frac{dy}{dx}$ = $2x(e^{2x})(2)$ - $4\sqrt x({e^{4\sqrt x}})(\frac{4}{2\sqrt x})$ $\frac{dy}{dx}$ = $4x(e^{2x})$ - $8({e^{4\sqrt x}})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.