Answer
$4x(e^{2x})$ - $8({e^{4\sqrt x}})$
Work Step by Step
$\frac{dy}{dx}$ = $\ln{e^{2x}}\frac{d}{dx}(e^{2x})$ - $\ln{e^{4\sqrt x}}\frac{d}{dx}({e^{4\sqrt x}})$
$\frac{dy}{dx}$ = $2x(e^{2x})(2)$ - $4\sqrt x({e^{4\sqrt x}})(\frac{4}{2\sqrt x})$
$\frac{dy}{dx}$ = $4x(e^{2x})$ - $8({e^{4\sqrt x}})$