Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 32

Answer

$$ 1$$

Work Step by Step

$$\eqalign{ & \int_{ - \ln 2}^0 {{e^{ - x}}} dx \cr & {\text{use the formula }}\int_a^b {{e^{kx}}} dx = \left( {\frac{{{e^{kx}}}}{k}} \right)_a^b \cr & \int_{ - \ln 2}^0 {{e^{ - x}}} dx = \left( { - {e^{ - x}}} \right)_{ - \ln 2}^0 \cr & {\text{use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & \int_{ - \ln 2}^0 {{e^{ - x}}} dx = - {e^{ - 0}} + {e^{ - \left( { - \ln 2} \right)}} \cr & {\text{simplifying}} \cr & \int_{ - \ln 2}^0 {{e^{ - x}}} dx = - 1 + {e^{\ln 2}} \cr & \int_{ - \ln 2}^0 {{e^{ - x}}} dx = - 1 + 2 \cr & \int_{ - \ln 2}^0 {{e^{ - x}}} dx = 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.