Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 27

Answer

$$\frac{{dy}}{{dx}} = \frac{{2{e^{2x}} - \cos \left( {x + 3y} \right)}}{{3\cos \left( {x + 3y} \right)}}$$

Work Step by Step

$$\eqalign{ & {e^{2x}} = \sin \left( {x + 3y} \right) \cr & {\text{find the derivative using implicit differentiation; }} \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left[ {{e^{2x}}} \right] = \frac{d}{{dx}}\left[ {\sin \left( {x + 3y} \right)} \right] \cr & {\text{use }}\frac{d}{{dx}}\left[ {{e^u}} \right] = {e^u}\frac{{du}}{{dx}}{\text{ and }}\frac{d}{{dx}}\left[ {\sin u} \right] = \cos u\frac{{du}}{{dx}} \cr & {e^{2x}}\frac{d}{{dx}}\left[ {2x} \right] = \cos \left( {x + 3y} \right)\frac{d}{{dx}}\left[ {x + 3y} \right] \cr & {\text{solving the derivatives}} \cr & {e^{2x}}\left( 2 \right) = \cos \left( {x + 3y} \right)\left( {1 + 3\frac{{dy}}{{dx}}} \right) \cr & {\text{solving for }}\frac{{dy}}{{dx}} \cr & 2{e^{2x}} = \cos \left( {x + 3y} \right) + 3\cos \left( {x + 3y} \right)\frac{{dy}}{{dx}} \cr & 3\cos \left( {x + 3y} \right)\frac{{dy}}{{dx}} = 2{e^{2x}} - \cos \left( {x + 3y} \right) \cr & \frac{{dy}}{{dx}} = \frac{{2{e^{2x}} - \cos \left( {x + 3y} \right)}}{{3\cos \left( {x + 3y} \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.