Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 29

Answer

$$\frac{{{e^{3x}}}}{3} - 5{e^{ - x}} + C $$

Work Step by Step

$$\eqalign{ & \int {\left( {{e^{3x}} + 5{e^{ - x}}} \right)} dx \cr & {\text{use sum rule for integration}} \cr & = \int {{e^{3x}}} dx + \int {5{e^{ - x}}} dx \cr & {\text{constant multiple rule}} \cr & = \int {{e^{3x}}} dx + 5\int {{e^{ - x}}} dx \cr & {\text{use the formula }}\int {{e^{ax}}} dx = \frac{{{e^{ax}}}}{a} + C \cr & = \frac{{{e^{3x}}}}{3} + 5\left( {\frac{{{e^{ - x}}}}{{ - 1}}} \right) + C \cr & {\text{simplifying}} \cr & = \frac{{{e^{3x}}}}{3} - 5{e^{ - x}} + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.