Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 35

Answer

$$2$$

Work Step by Step

$$\eqalign{ & \int_{\ln 4}^{\ln 9} {{e^{x/2}}} dx \cr & {\text{use the formula }}\int_a^b {{e^{kx}}} dx = \left( {\frac{{{e^{kx}}}}{k}} \right)_a^b;{\text{ for this exercise set }}k = 1/2 \cr & \int_{\ln 4}^{\ln 9} {{e^{x/2}}} dx = \left( {\frac{{{e^{x/2}}}}{{1/2}}} \right)_{\ln 4}^{\ln 9} \cr & = 2\left( {{e^{x/2}}} \right)_{\ln 4}^{\ln 9} \cr & {\text{use fundamental theorem of calculus }}\int_a^b {f\left( x \right)} dx = F\left( b \right) - F\left( a \right).\,\,\,\,\left( {{\text{see page 281}}} \right) \cr & = 2\left( {{e^{\left( {ln9} \right)/2}} - {e^{\left( {ln4} \right)/2}}} \right) \cr & {\text{simplifying}} \cr & = 2\left( {{e^{\ln 3}} - {e^{\ln 2}}} \right) \cr & = 2\left( {3 - 2} \right) \cr & = 2 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.