Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 20

Answer

$$\frac{{dy}}{{d\theta }} = \frac{1}{{2\theta \left( {1 + \sqrt \theta } \right)}}$$

Work Step by Step

$$\eqalign{ & y = \ln \left( {\frac{{\sqrt \theta }}{{1 + \sqrt \theta }}} \right) \cr & {\text{using the logarithmic property ln}}\left( {\frac{a}{b}} \right) = \ln a - \ln b \cr & y = \ln \left( {\sqrt \theta } \right) - \ln \left( {1 + \sqrt \theta } \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}\theta \cr & \frac{{dy}}{{d\theta }} = \frac{d}{{d\theta }}\left[ {\ln \left( {\sqrt \theta } \right)} \right] - \frac{d}{{d\theta }}\left[ {\ln \left( {1 + \sqrt \theta } \right)} \right] \cr & {\text{use the rule }}\frac{d}{{d\theta }}\left[ {\ln u} \right] = \frac{1}{u}\frac{{du}}{{d\theta }}.{\text{ then}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sqrt \theta }}\frac{d}{{d\theta }}\left[ {\sqrt \theta } \right] - \frac{1}{{1 + \sqrt \theta }}\frac{d}{{d\theta }}\left[ {1 + \sqrt \theta } \right] \cr & {\text{solving derivatives}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{\sqrt \theta }}\left( {\frac{1}{{2\sqrt \theta }}} \right) - \frac{1}{{1 + \sqrt \theta }}\left( {\frac{1}{{2\sqrt \theta }}} \right) \cr & {\text{simplifying}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\sqrt \theta \sqrt \theta }} - \frac{1}{{2\sqrt \theta \left( {1 + \sqrt \theta } \right)}} \cr & {\text{factoring}} \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\sqrt \theta }}\left( {\frac{1}{{\sqrt \theta }} - \frac{1}{{1 + \sqrt \theta }}} \right) \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\sqrt \theta }}\left( {\frac{{1 + \sqrt \theta - \sqrt \theta }}{{\sqrt \theta \left( {1 + \sqrt \theta } \right)}}} \right) \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\theta }}\left( {\frac{1}{{1 + \sqrt \theta }}} \right) \cr & \frac{{dy}}{{d\theta }} = \frac{1}{{2\theta \left( {1 + \sqrt \theta } \right)}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.