Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.3 - Exponential Functions - Exercises 7.3 - Page 390: 22

Answer

$$\frac{{dy}}{{dt}} = \left( {\frac{2}{t} + \left( {\ln {t^2} + 1} \right)\cos t} \right){e^{\sin t}}$$

Work Step by Step

$$\eqalign{ & y = {e^{\sin t}}\left( {\ln {t^2} + 1} \right) \cr & {\text{Find the derivative of }}y{\text{ with respect to }}t \cr & \frac{{dy}}{{dt}} = \frac{d}{{dt}}\left[ {{e^{\sin t}}\left( {\ln {t^2} + 1} \right)} \right] \cr & {\text{use the product rule}} \cr & \frac{{dy}}{{dt}} = {e^{\sin t}}\frac{d}{{dt}}\left[ {\ln {t^2} + 1} \right] + \left( {\ln {t^2} + 1} \right)\frac{d}{{dt}}\left[ {{e^{\sin t}}} \right] \cr & {\text{use the logarithmic property }}\ln {u^n} = n\ln u \cr & \frac{{dy}}{{dt}} = {e^{\sin t}}\frac{d}{{dt}}\left[ {2\ln t + 1} \right] + \left( {\ln {t^2} + 1} \right)\frac{d}{{dt}}\left[ {{e^{\sin t}}} \right] \cr & {\text{solve the derivative and simplify}} \cr & \frac{{dy}}{{dt}} = {e^{\sin t}}\left( {\frac{2}{t}} \right) + \left( {\ln {t^2} + 1} \right)\left( {{e^{\sin t}}\cos t} \right) \cr & \frac{{dy}}{{dt}} = \frac{{2{e^{\sin t}}}}{t} + \left( {\ln {t^2} + 1} \right){e^{\sin t}}\cos t \cr & {\text{Factoring}} \cr & \frac{{dy}}{{dt}} = \left( {\frac{2}{t} + \left( {\ln {t^2} + 1} \right)\cos t} \right){e^{\sin t}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.