Answer
$\int \frac{du}{u}$
$u=1-2\sqrt x$
Work Step by Step
Try it:
$u=1-2x^\frac{1}{2}$
$du=-\frac{1}{2}2x^{-\frac{1}{2}}dx$
$du=-(x^{-\frac{1}{2}})dx$
$du=-\frac{1}{\sqrt x}dx$
$-\int \frac{1}{1-2\sqrt x}(\frac{-1}{\sqrt x})dx$
$- \int \frac{du}{u}$
$-ln|u|+C$
$-ln|1-2\sqrt x|+C$
$\int \frac{du}{u}$
$u=1-2\sqrt x$