Answer
$(a)\ln \sqrt {x^{2}+1}+C$
Work Step by Step
$\frac{dy}{dx}=\frac{x}{X^{2}+1}$
$\int dy=\int \frac{x}{x^{2}+1}dx$
Let $u=x^{2}+1$.
$\frac{du}{dx}=2x$
$dx=\frac{1}{2x}du$
$y=\int (\frac{x}{u})(\frac{1}{2x})du$
$y=\frac{1}{2}\int \frac{du}{u}$
$y=\frac{1}{2}\ln (x^{2}+1)+C$
$y=\ln (x^{2}+1)^{\frac{1}{2}}+C$
$y=\ln \sqrt {x^{2}+1}+C$
Thus the answer is $(a)\ln \sqrt {x^{2}+1}+C$.