Answer
$cscx+cotx+C$
Work Step by Step
$ \int \frac {cosx+1}{(cosx-1)(cosx+1)}dx$
$ \int \frac {cosx+1}{(cosx-1)(cosx+1)}dx \times \frac {cosx+1}{cosx+1}$
$\int \frac {cosx+1}{cos^2x-1}dx$
$-\int \frac {cosx+1}{1-cos^2x}dx$
$-\int \frac {cosx+1}{sin^2x}dx$
$-\int \frac {cosx}{sin^2x}dx+ \int \frac{1}{sin^2x}dx$
$-\int cscxcotxdx +\int csc^2xdx$
$-(-cscx-cotx+C)$
$cscx+cotx+C$