Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter 8 - Integration Techniques, L'Hopital's Rule, and Improper Integrals - 8.1 Exercises - Page 512: 47

Answer

$$s = \frac{1}{2}\arcsin \left( {{t^2}} \right) - \frac{1}{2}$$

Work Step by Step

$$\eqalign{ & \frac{{ds}}{{dt}} = \frac{t}{{\sqrt {1 - {t^4}} }} \cr & {\text{Separate the variables}} \cr & ds = \frac{t}{{\sqrt {1 - {t^4}} }}dt \cr & {\text{Integrate both sides}} \cr & \int {ds} = \int {\frac{t}{{\sqrt {1 - {t^4}} }}} dt \cr & s = \frac{1}{2}\int {\frac{{2t}}{{\sqrt {1 - {{\left( {{t^2}} \right)}^2}} }}} dt \cr & s = \frac{1}{2}\arcsin \left( {{t^2}} \right) + C{\text{ }}\left( {\bf{1}} \right) \cr & {\text{Use the initial condition }}\left( {0, - \frac{1}{2}} \right) \cr & - \frac{1}{2} = \frac{1}{2}\arcsin \left( 0 \right) + C \cr & C = - \frac{1}{2} \cr & {\text{Substitute }}C{\text{ into }}\left( {\bf{1}} \right) \cr & s = \frac{1}{2}\arcsin \left( {{t^2}} \right) - \frac{1}{2} \cr & \cr & {\text{Graph}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.