Answer
$x^{12a+2}$
Work Step by Step
Using laws of exponents, the given expression simplifies to
\begin{align*}
&
\dfrac{x^{4a}\left( x^{4a} \right)^3}{x^{4a-2}}
\\\\&=
\dfrac{x^{4a}\left( x^{4a(3)} \right)}{x^{4a-2}}
\\\\&=
\dfrac{x^{4a}\left( x^{12a} \right)}{x^{4a-2}}
\\\\&=
\dfrac{x^{4a+12a}}{x^{4a-2}}
\\\\&=
\dfrac{x^{16a}}{x^{4a-2}}
\\\\&=
x^{16a-(4a-2)}
\\\\&=
x^{16a-4a+2}
\\\\&=
x^{12a+2}
.\end{align*}