Answer
$\frac{x^{12}}{36y^{14}}$
Work Step by Step
We are given the expression $(6x^{-6}y^{7}z^{0})^{-2}$.
To simplify, we can use the power rule, which holds that $(a^{m})^{n}=a^{m\times n}$ (where a is a real number, and m and n are integers).
$(6x^{-6}y^{7}z^{0})^{-2}=(6^{-2})\times(x^{-6\times-2})\times(y^{7\times-2})\times(z^{0\times-2})=$
$(6^{-2})\times(x^{12})\times(y^{-14})\times(z^{0})=\frac{x^{12}\times1}{6^{2}y^{14}}=\frac{x^{12}}{36y^{14}}$