College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 8

Answer

Solution set: $(-\infty,-3) \cup \left(\frac{1}{2},3\right)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $2x^3-18x \lt x^2-9$, $2x^3-18x-x^2+9 \lt 0$, $2x^3-x^2-18x+9 \lt 0$, $x^2(2x-1)-9(2x-1) \lt 0$, $(x^2-9)(2x-1) \lt 0$, $(x-3)(x+3)(2x-1) \lt 0$ $f(x)=(x-3)(x+3)(2x-1)$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(x-3)(x+3)(2x-1)=0$ $x=3$ or $x=-3$ or $x=\frac{1}{2}$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \lt 0 ? \\ & &(a-3)(a+3)(2a-1)& \\ (-\infty,-3) & -6 & (-)(-)(-) & T\\ (-3,\frac{1}{2}) & 0 & (-)(+)(-) & F\\ (\frac{1}{2},3) & 2 & (-)(+)(+) & T\\ (3,\infty) & 4 & (+)(+)(+) & F \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(-\infty,-3) \cup \left(\frac{1}{2},3\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.