College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 35

Answer

$\left(-3, -\frac{1}{2}\right) \cup (2, \infty)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{x+2}{x+3}\lt\frac{x-1}{x-2}$, $\displaystyle \frac{x+2}{x+3}-\frac{x-1}{x-2} \lt0$ , $\displaystyle \frac{-2x-1}{(x+3)(x-2)}\lt 0$ , $f(x)=\displaystyle \frac{-2x-1}{(x+3)(x-2)}\lt 0$, 2.The cut points are: $\displaystyle \frac{-2x-1}{(x+3)(x-2)}=0$ $x=-3$ or $x=-\frac{1}{2}$ or $x=2$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \lt 0 ? \\ & & \displaystyle \displaystyle \frac{-2a-1}{(a+3)(a-2)} & \\ (-\infty,-3) & -5 & \frac{(+)}{(-)(-)}=(+) & F\\ (-3, -\frac{1}{2}) & -2 & \frac{(+)}{(+)(-)}=(-) & T\\ (-\frac{1}{2}, 2) & 0 & \frac{(-)}{(+)(-)}=(+) & F\\ (2,\infty) & 10 & \frac{(-)}{(+)(+)}=(-) & T\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left(-3, -\frac{1}{2}\right) \cup (2, \infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.