College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 15

Answer

$(-\infty, -1) \cup (1,7) $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $x(1-x^2)^3 \gt 7(1-x^2)^3$, $x(1-x^2)^3-7(1-x^2)^3 \gt 0$, $(x-7)(1-x^2)^3 \gt 0$, $(x-7)(1-x^6) \gt 0$, $(x-7)(1-x^3)(1+x^3) \gt 0$, $(x-7)(1-x)(x^2+x+1)(1+x^3) \gt 0$ $f(x)=(x-7)(1-x)(x^2+x+1)(1+x^3)$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(x-7)(1-x)(x^2+x+1)(1+x^3)=0$ $x=1$ or $x=7$ or $x=-1$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \gt 0 ? \\ & &(a-7)(1-a)(a^2+a+1)(1+a^3)& \\ (-\infty, -1) & -2 & (-)(+)(+)(-) & T\\ (-1, 1) & 0 & (-)(+)(+)(+) & F\\ (1, 7) & 5 & (-)(-)(+)(+) &T\\ (7,\infty) & 9 & (+)(-)(+)(+) & F \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(-\infty, -1) \cup (1,7) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.