College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 32

Answer

Solution set: $(-\infty, -1)( \cup \{1\} $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{x^2-2x+1}{x^3+3x^2+3x+1} \leq 0$, $\displaystyle \frac{(x-1)(x-1)}{(x+1)(x+1)(x+1)} \leq 0$ $f(x)=\displaystyle \frac{(x-1)(x-1)}{(x+1)(x+1)(x+1)} \leq 0$, 2.The cut points are: $\displaystyle \frac{(x-1)(x-1)}{(x+1)(x+1)(x+1)} =0$ $x=-1$ or $x=1$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & & \displaystyle \displaystyle \frac{(a-1)(a-1)}{(a+1)(a+1)(a+1)} & \\ (-\infty,-1) & -5 & \frac{(-)(-)}{(-)(-)(-)}=(-) & T\\ (-1, 1) & 0 & \frac{(-)(-)}{(+)(+)(+)}=(+) & F\\ (1,\infty) & 5 & \frac{(+)(+)}{(+)(+)(+)}=(+) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points unless they belong to the denominator. Solution set: $(-\infty, -1) \cup \{1\} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.