College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 33

Answer

$[-2, 0) \cup (1, 3]$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{6}{x-1} -\frac{6}{x} \geq 1$, $\displaystyle\frac{6}{x-1} -\frac{6}{x} -1\geq 0$ , $\displaystyle\frac{6x-6x+6-x^2+x}{(x-1)(x)}\geq 0$ , $\displaystyle \frac{(-x+3)(x+2)}{(x-1)(x)}\geq 0$ , $f(x)=\displaystyle \frac{(-x+3)(x+2)}{(x-1)(x)}\geq 0$, 2.The cut points are: $\displaystyle \frac{(-x+3)(x+2)}{(x-1)(x)}=0$ $x=-2$ or $x=0$ or $x=1$ or $x=3$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \geq 0 ? \\ & & \displaystyle \displaystyle \frac{(-x+3)(x+2)}{(x-1)(x)} & \\ (-\infty,-2) & -5 & \frac{(+)(-)}{(-)(-)}=(-) & F\\ (-2, 0) & -1 & \frac{(+)(+)}{(-)(-)}=(+) & T\\ (0, 1) & \frac{1}{2} & \frac{(+)(+)}{(-)(+)}=(-) & F\\ (1, 3) & 2 & \frac{(+)(+)}{(+)(+)}=(+) & T\\ (3,\infty) & 5 & \frac{(-)(+)}{(+)(+)}=(-) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points unless they belong to the denominator. Solution set: $[-2, 0) \cup (1, 3]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.