College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 7

Answer

$[-4,-2] \cup [2, \infty)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $x^3+4x^2 \geq 4x+16$, $x^3+4x^2-4x-16 \geq 0$, $x^2(x+4)-4(x+4) \geq 0$, $(x^2-4)(x+4) \geq 0$, $(x-2)(x+2)(x+4) \geq 0$ $f(x)=(x-2)(x+2)(x+4)$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(x-2)(x+2)(x+4)=0$ $x=2$ or $x=-2$ or $x=-4$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \geq 0 ? \\ & &(a-2)(a+2)(a+4) & \\ (-\infty,-4) & -6 & (-)(-)(-) & F\\ (-4,-2) & -3 & (-)(-)(+) & T\\ (-2,2) & 0 & (-)(+)(+) & F\\ (2,\infty) & 4 & (+)(+)(+) & T \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $[-4,-2] \cup [2, \infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.