College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 16

Answer

$\left[-\frac{1}{3}, \frac{1}{2}\right] \cup [1, \infty)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $x^2(7-6x) \leq 1$, $7x^2-6x^3-1 \leq0$, $-6x^3+7x^2-1 \leq 0$, $(x-1)(x-\frac{1}{2})(-6x-2) \leq 0$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(x-1)(x-\frac{1}{2})(-6x-2)=0$ $x=1$ or $x=\frac{1}{2}$ or $x=-\frac{1}{3}$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & &(a-1)(a-\frac{1}{2})(-6a-2)& \\ (-\infty, -\frac{1}{3}) & -2 & (-)(-)(+) & F\\ (-\frac{1}{3}, \frac{1}{2}) & 0 & (-)(-)(-) & T\\ (\frac{1}{2}, 1) & 0.6 & (-)(+)(-) &F\\ (1,\infty) & 2 & (+)(+)(-) & T \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left[-\frac{1}{3}, \frac{1}{2}\right] \cup [1, \infty)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.