College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 26

Answer

$(-4,-2) \cup (2,4)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{(x^2-16)}{(x^4-16)} \lt 0$ $f(x)=\displaystyle \frac{(x-4)(x+4)}{(x-2)(x+2)(x^2+4)} \lt 0$ 2.The cut points are: $\displaystyle \displaystyle \frac{(x-4)(x+4)}{(x-2)(x+2)(x^2+4)} = 0$ $x=-4$ or $x=-2$ or $x=2$ or $x=4$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \lt 0 ? \\ & & \displaystyle \displaystyle \frac{(a-4)(a+4)}{(a-2)(a+2)(a^2+4)} & \\ (-\infty,-4) & -5 & \frac{(-)(-)}{(-)(-)(+)}=(+) & F\\ (-4, -2) & -3 & \frac{(-)(+)}{(-)(-)(+)}=(-) & T\\ (-2, 2) & 0 & \frac{(-)(+)}{(-)(+)(+)}=(+) & F\\ (2, 4) & 3 & \frac{(-)(+)}{(+)(+)(+)}=(-) & T\\ (4,\infty) & 10 & \frac{(+)(+)}{(+)(+)(+)}=(+) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(-4,-2) \cup (2,4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.