College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 28

Answer

$(-2, -1) \cup \left(-\frac{2}{3}, 0\right) $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{1}{x} +\frac{1}{x+1} \lt \frac{2}{x+2}$, $\displaystyle \frac{1}{x} +\frac{1}{x+1}- \frac{2}{x+2}\lt 0$, $\displaystyle \frac{(x+1)(x+2)+x(x+2)-2(x(x+1))}{x(x+1)(x+2)}\lt 0$, $\displaystyle \frac{x^2+2x+x+2+x^2+2x-2x^2-2x}{x(x+1)(x+2)}\lt 0$, $\displaystyle \frac{3x+2}{x(x+1)(x+2)}\lt 0$, $f(x)=\displaystyle \frac{3x+2}{x(x+1)(x+2)}\lt 0$, 2.The cut points are: $\displaystyle \frac{3x+2}{x(x+1)(x+2)} =0$ $x=-\frac{2}{3}$ or $x=0$ or $x=-1$ or $x=-2$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \lt 0 ? \\ & & \displaystyle \displaystyle \frac{3a+2}{a(a+1)(a+2)} & \\ (-\infty,-2) & -5 & \frac{(-)}{(-)(-)(-)}=(+) & F\\ (-2, -1) & -\frac{3}{2} & \frac{(-)}{(-)(-)(+)}=(-) & T\\ (-1, -\frac{2}{3}) & -\frac{3}{4} & \frac{(-)}{(-)(+)(+)}=(+) & F\\ (-\frac{2}{3}, 0) & -\frac{1}{2} & \frac{(+)}{(-)(+)(+)}=(-) & T\\ (0,\infty) & 5 & \frac{(+)}{(+)(+)(+)}=(+) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(-2, -1) \cup \left(-\frac{2}{3}, 0\right) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.