College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 36

Answer

$(-\infty,-3-\sqrt2] \cup(-3, -2) \cup[-3+\sqrt2, -1) $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{1}{x+1}+\frac{1}{x+2} \leq \frac{1}{x+3}$, $\displaystyle \frac{1}{x+1}+\frac{1}{x+2} -\frac{1}{x+3} \leq 0$ , $\displaystyle \frac{(x+3+\sqrt2)(x+3-\sqrt2)}{(x+1)(x+2)(x+3)}\leq 0$ , $f(x)=\displaystyle \frac{(x+3+\sqrt2)(x+3-\sqrt2)}{(x+1)(x+2)(x+3)}\leq 0$, 2.The cut points are: $\displaystyle \frac{(x+3+\sqrt2)(x+3-\sqrt2)}{(x+1)(x+2)(x+3)}=0$ $x=-3+\sqrt2$ or $x=-3-\sqrt2$ or $x=-1$ or $x=-2$ or $x=-3$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & & \displaystyle \displaystyle \frac{(a+3+\sqrt2)(a+3-\sqrt2)}{(x+1)(a+2)(a+3)}& \\ (-\infty,-3-\sqrt2) & -5 & \frac{(-)(-)}{(-)(-)(-)}=(-) & T\\ (-3-\sqrt2, -3) & -4 & \frac{(-)(+)}{(-)(-)(-)}=(+) & F\\ (-3, -2) & -\frac{5}{2} & \frac{(-)(+)}{(-)(-)(+)}=(-) & T\\ (-2, -3+\sqrt2) & -\frac{5}{3} & \frac{(-)(+)}{(-)(+)(+)}=(+) & F\\ (-3+\sqrt2, -1) & -\frac{3}{2} & \frac{(+)(+)}{(-)(+)(+)}=(-) & T\\ (-1,\infty) & 0 & \frac{(+)(+)}{(+)(+)(+)}=(+) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(-\infty,-3-\sqrt2] \cup(-3, -2) \cup[-3+\sqrt2, -1) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.