College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 44

Answer

$D=(-\infty,-2) \cup(-1, 1) \cup (2, \infty) $

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle f(x)= \frac{1}{\sqrt{x^4-5x^2+4}}$, Lets take the denominator of $f(x)$ and factorise and assign it to $g(x)$. $\sqrt {x^4-5x^2+4} \gt 0,$ $x^4-5x^2+4 \gt 0,$ lets let $x^2=k$. $k^2-5k+4 \gt 0,$ $k^2-k-4k+4 \gt 0,$ $(k-1)(k-4),$ substituting back in $x^2=k$. $(x^2-1)(x^2-4)\gt0,$ $g(x)=(x-1)(x+1)(x-2)(x+2)$ 2.The cut points are: $\displaystyle (x-1)(x+1)(x-2)(x+2)=0$ $x=-2$ or $x=-1$ or $x=1$ or $x=2$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $g(x)$ and eventually $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & g(a),signs & f(a), signs\\ & & \displaystyle (a-1)(a+1)(a-2)(a+2) & \displaystyle \frac{1}{\sqrt{(a-1)(a+1)(a-2)(a+2)}}& \\ (-\infty,-2) & -5 & (-)(-)(-)(-)=(+)&\frac{}{(-)(-)(-)(-)}=(+) \\ (-2, -1) &\frac{3}{2}& (-)(-)(-)(+)=(-) & \frac{}{(-)(-)(-)(+)}=Undefined \\ (-1, 1) & 0 & (-)(+)(-)(+)=(+)&\frac{}{(-)(+)(-)(+)}=(+)\\ (1, 2) & \frac{3}{2} & (+)(+)(-)(+)=(-)&\frac{}{(+)(+)(-)(+)}=Undefined \\ (2,\infty) & 5 & (+)(+)(+)(+)=(+)&\frac{}{(+)(+)(+)(+)}=(+) \\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. The Domain of $f(x)$ is: $D=(-\infty,-2) \cup(-1, 1) \cup (2, \infty) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.