College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 17

Answer

$(1, 10)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{x-1}{x-10} \lt 0$ $f(x)=\displaystyle \frac{x-1}{x-10}$ 2. The cut points are: $\displaystyle \frac{x-1}{x-10} \lt 0$ $x=1$ or $x=10$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \lt 0 ? \\ & & \frac{a-1}{a-10} & \\ (-\infty,1) & 0 & \frac{(-)}{(-)}=(+) & F\\ (1,10) & 5 & \frac{(+)}{(-)}=(-) & T\\ (10,\infty) & 15 & \frac{(+)}{(+)}=(+) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $(1, 10)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.