College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 12

Answer

$\left[-2,-\frac{3}{2}\right] \cup \left[\frac{3}{2}, 2\right]$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a polynomial function. $4x^4-25x^2+36 \leq 0$, $4x^4-16x^2-9x^2+36 \leq 0$, $4x^2(x^2-4)-9(x^2-4) \leq 0$, $(4x^2-9)(x^2-4) \leq 0$, $(2x-3)(2x+3)(x-2)(x+2) \leq 0$ $f(x)=(2x-3)(2x+3)(x-2)(x+2)$ 2. Solve the equation $f(x)=0$. The real solutions are the boundary points. $(2x-3)(2x+3)(x-2)(x+2)=0$ $x=\frac{3}{2}$ or $x=-\frac{3}{2}$ or $x=2$ or $x=-2$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & &(2a-3)(2a+3)(a-2)(a+2)& \\ (-\infty, -2) & -4 & (-)(-)(-)(-) & F\\ (-2,-\frac{3}{2}) & -1.75 & (-)(-)(-)(+) & T\\ (-\frac{3}{2}, \frac{3}{2}) & 0 & (-)(+)(-)(+) & F\\ (\frac{3}{2}, 2) & 1.75 & (+)(+)(-)(+) & T\\ (2,\infty) & 4 & (+)(+)(+)(+) & F \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left[-2,-\frac{3}{2}\right] \cup \left[\frac{3}{2}, 2\right]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.