College Algebra 7th Edition

Published by Brooks Cole
ISBN 10: 1305115546
ISBN 13: 978-1-30511-554-5

Chapter 3, Polynomial and Rational Functions - Section 3.7 - Polynomial and Rational Inequalities - 3.7 Exercises - Page 352: 20

Answer

$\left(-3, -\frac{5}{2}\right] \cup \left[\frac{5}{2}, 3\right)$

Work Step by Step

1. Express the inequality in the form $f(x)<0, f(x)>0, f(x)\leq 0$, or $f(x)\geq 0,$ where $f$ is a Rational function. $\displaystyle \frac{4x^2-25}{x^2-9} \leq 0$ $f(x)=\displaystyle \frac{(2x-5)(2x+5)}{(x-3)(x+3)} \leq 0$ 2. The cut points are: $\displaystyle \frac{(2x-5)(2x+5)}{(x-3)(x+3)} = 0$ $x=-3$ or $x=\frac{-5}{2}$ or $x=\frac{5}{2}$ or $x=3$ 3. Make a table or diagram: use the test values to make a table or diagram of the sign of each factor in each interval. 4. Test each interval's sign of $f(x)$ with a test value, $\begin{array}{llll} Intervals: & a=test.v. & f(a),signs & f(a) \leq 0 ? \\ & & \displaystyle \frac{(2a-5)(2a+5)}{(a-3)(a+3)} & \\ (-\infty,-3) & -5 & \frac{(-)(-)}{(-)(-)}=(+) & F\\ (-3,-\frac{5}{2}) & -\frac{11}{4} & \frac{(-)(-)}{(-)(+)}=(-) & T\\ (-\frac{5}{2}, \frac{5}{2}) & 0 & \frac{(-)(+)}{(-)(+)}=(+) & F\\ (\frac{5}{2}, 3) & \frac{11}{4} & \frac{(+)(+)}{(-)(+)}=(-) & T\\ (3,\infty) & 10 & \frac{(+)(+)}{(+)(+)}=(+) & F\\ \end{array}$ 5. Write the solution set, selecting the interval or intervals that satisfy the given inequality. If the inequality involves $\leq$ or $\geq$, include the boundary points. Solution set: $\left(-3, -\frac{5}{2}\right] \cup \left[\frac{5}{2}, 3\right)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.