Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 8

Answer

$$\frac{x}{\sqrt{1+x^{2}}}+C$$

Work Step by Step

Given $$\int\left(1+x^{2}\right)^{-3 / 2} d x $$ Let $$ x=\tan u \ \ \ \ \ \ \ dx=\sec^2 u du$$ Then \begin{align*} \int\left(1+x^{2}\right)^{-3 / 2} d x&= \int \left(1+\tan^{2}u\right)^{-3 / 2} \sec^2 u du\\ &= \int \left( \sec^{2}u\right)^{-3 / 2} \sec^2 u du\\ &=\int \cos udu\\ &= \sin u +C\\ &= \frac{x}{\sqrt{1+x^{2}}}+C \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.