Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - Chapter Review Exercises - Page 460: 22

Answer

$$(x+1)[\ln (x+1)]^{2}-2(x+1) \ln (x+1)+2(x+1)+C$$

Work Step by Step

Given $$\int(\ln (x+1))^{2} d x$$ Let \begin{align*} u&=(\ln (x+1))^{2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv=dx\\ du&=2\ln (x+1)\frac{1}{1+x}dx \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v=x \end{align*} Then \begin{align*} \int(\ln (x+1))^{2} d x&=x(\ln (x+1))^{2}-2\int \ln (x+1) \frac{x}{x+1}dx \end{align*} Let \begin{align*} u&=\ln (x+1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv= \frac{x}{x+1}dx\\ du&= \frac{1}{1+x}dx \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ v=x+\ln (x+1) \end{align*} Then \begin{align*} \int \ln (x+1) \frac{x}{x+1}dx&= [x+\ln (x+1)]\ln (x+1) -\int[x+\ln (x+1)] \frac{1}{1+x}dx\\ &= [x+\ln (x+1)]\ln (x+1) -[x+\ln (x+1)] -\frac{1}{2}[\ln (x+1)]^2+C \end{align*} Hence $$ \int(\ln (x+1))^{2} d x=(x+1)[\ln (x+1)]^{2}-2(x+1) \ln (x+1)+2(x+1)+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.